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The aim of  the present study was to: 1) check whether it would be possible to detect 
cows susceptible to mastitis at an early stage of  their utilization based on selected 
genotypes and basic production traits in the first three lactations using ensemble data 
mining methods (boosted classification tress – BT and random forest – RF), 2) find 
out whether the inclusion of  additional production variables for subsequent lactations 
will improve detection performance of  the models, 3) identify the most significant 
predictors of  susceptibility to mastitis, and 4) compare the results obtained by using 
BT and RF with those for the more traditional generalized linear model (GLZ). A total 
of  801 records for Polish Holstein-Friesian Black-and-White cows were analyzed. The 
maximum sensitivity, specificity and accuracy of  the test set were 72.13%, 39.73%, 
55.90% (BT), 86.89%, 17.81%, 59.49% (RF) and 90.16%, 8.22%, 58.97% (GLZ), 
respectively. Inclusion of  additional variables did not have a significant effect on the 
model performance. The most significant predictors of  susceptibility to mastitis were: 
milk yield, days in milk, sire’s rank, percentage of  Holstein-Friesian genes, whereas 
calving season and genotypes (lactoferrin, tumor necrosis factor alpha, lysozyme and 
defensins) were ranked much lower. The applied models (both data mining ones and 
GLZ) showed low accuracy in detecting cows susceptible to mastitis and therefore 
some other more discriminating predictors should be used in future research.
Key words: lactoferrin, tumor necrosis factor alpha, lysozyme, defensins, mastitis 
susceptibility, classification trees.

INTRODUCTION

Mastitis is one of  the costliest and most frequent diseases in dairy cattle worldwide 
[1]. Its incidence in Polish dairy cows is approx. 30 – 50%, whereas the financial losses 
resulting from its occurrence in various European Union countries and the USA 
have been estimated at approx. EUR 693 per cow annually or approx. USD 2 billion 
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in total per annum [2,3]. Mastitis is mainly caused by environmental factors such as 
milking machine effects, inappropriate milking and herd management, suboptimal 
feeding, and poor hygiene, but genetic and physiological factors (e.g. genetic selection 
for maximum milk yield) also play an important role in its etiology [4-6]. Mastitis 
leads to many adverse consequences including reduced milk yield, changes in milk 
quality which render it unsuitable for sale, shortened productive life of  the cow and 
lower immunity to other diseases, premature culling, and increased labor, diagnosis, 
veterinary and medicine costs [7-11]. Considerable financial savings can be made by 
preventing mastitis and treating infected animals effectively. The incidence of  clinical 
mastitis can be reduced by selection for resistance to it. However, genetic evaluation of  
mastitis resistance is difficult due to its low heritability. In such cases, indirect selection 
can be performed based on traits strongly correlated with mastitis such as somatic cell 
count [11].
From among the many genes with a potential effect on mastitis occurrence, four are 
quite frequently mentioned, i.e. genes coding for lysozyme, lactoferrin, tumour necrosis 
factor alpha and those encoding defensins. Lysozyme, produced by polymorphonuclear 
leukocytes, is an antimicrobial enzyme present in many different types of  body tissues 
and fluids which protects the epithelium of  various organs, including the bovine 
mammary gland, against bacterial and other microbial infections [12]. It is one of  
the most crucial components involved in the so-called non-specific humoral response 
of  the immune system, whose concentration in bovine milk strongly depends on 
the udder health state, i.e. it is significantly increased in the colostrum and mastitis 
milk compared with normal milk. Moreover, it has been shown that lysozyme has a 
synergistic effect against E. coli and Microcccus luteus together with immunoglobulins 
and lactoferrin [13]. This function of  lysozyme is especially important as recent studies 
on the role of  E. coli in the pathogenesis of  recurrent bovine mastitis indicate that 
some of  its strains are able to produce curli fimbriae and cellulose as the components 
of  their extracellular matrix and to form biofilm structures in vitro, which may facilitate 
the adaptation of  this bacterial species to the mammary gland environment and cause 
persistent intramammary infections in vivo [14]. On the other hand, the genetic variants 
of  the lactoferrin gene, whose glycoprotein product shows antibacterial, antiviral, 
antitumor and anti-inflammatory properties, have been successfully associated with 
cows’ susceptibility to mastitis and its main indicator trait, i.e. the level of  somatic 
cell count (SCC) in milk [15]. Being a multifunctional molecule, lactoferrin plays a 
crucial role in the innate host defense. It can bind iron ions, which is significant for its 
antibacterial effect (especially against E. coli, Pseudomonas aeruginosa, and Staphylococcus 
aureus) [16]. According to a recent study by Rajić Savić et al. (2014) [17], S. aureus is 
the predominant species (88% of  isolates) among highly virulent coagulase-positive 
staphylococci, which are resistant to penicillin, produce pigments and haemolysins, 
and are responsible for chronic infections of  the bovine mammary gland. The third 
of  the above-mentioned genes encodes tumor necrosis factor alpha (TNF-α), which 
belongs to the group of  key mediators in the local inflammatory immune response. 
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TNF-α initiates a cascade of  events and increases vascular permeability, which leads 
to the migration of  macrophages and neutrophils to an infection site. As a cytokine, it 
has a wide spectrum of  effects due to the large number of  sites where its receptors are 
located and its ability to activate different signal transduction pathways that affect the 
expression of  many genes [18]. A significant association of  the interaction between 
TNF-α genotype and parity with immunity to mastitis (the number of  mastitis cases 
and infected quarters) has been reported by Wojdak-Maksymiec et al. (2013) [19].
Finally, β-defensins produced by leukocytes are a family of  related small cationic 
peptides present in different tissues of  the organism and some of  their types can 
also be found in the mammary gland. Clusters of  β-defensin genes are considered 
candidate regions for SCC in bovine milk [20]. Their role in the immune response 
consists in providing protection against infectious agents such as bacteria, viruses and 
fungi through aggregation, pore formation and membrane depolarization. They are 
also involved in immunomodulation (e.g. by inducing the expression of  co-stimulatory 
molecules on monocytes and myeloid dendritic cells as well as the chemotaxis of  
immune cells to the infection site) and have potential developmental functions [21].
One of  the approaches to the identification of  cows with an increased risk of  
developing mastitis during their life-span is based on the use of  statistical methods for 
classification tasks and, more specifically, data mining techniques, which have become 
increasingly popular in the recent years in various animal farming applications [22-25]. 
For example, decision trees are tree-like representations of  a learned function used for 
approximating a target variable (such as health status) with the discrete values from 
a given dataset and consist of  nodes connected with branches, of  which terminal 
nodes (leaves) contain the target values [26]. In decision trees such as classification 
and regression trees (CART), the entire dataset is first divided into two groups to 
maximize the homogeneity of  cases within the nodes by searching every value of  
each predictor. Then, a recursive algorithm is applied so that these two groups are 
split again into two subgroups in order to reduce further node impurity according to 
the available values of  predictors. The splits are continued until the resulting nodes 
have so few cases that no further division is possible. The final stage of  tree model 
building is its pruning, as too large trees have a tendency to overfit the training data. 
The basic method to find the optimal tree is V-fold cross validation [27]. Predictions 
made with decision trees are based on sorting new cases down the tree until the leaf  
is reached. In some decision tree types, multi-way divisions are also possible whereby 
splitting can be performed according to all the variants of  a categorical variable [28]. 
To enhance the classification power of  single decision trees, ensemble methods have 
been developed where bagging or boosting is applied. The first solution is used in the 
so-called random forest (RF), in which a large number of  trees are grown in parallel 
on a subset of  records and the predictions made by individual trees are subsequently 
averaged. The latter approach, on the other hand, is applied in a method known as 
boosting trees (BT), where trees are grown sequentially and each successive tree tries 
to reduce the total error by modeling the residuals generated by previous trees [27]. 
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Finally, a generalized linear model (GLZ) can be considered as a reference model in 
which the values of  a dependent variable are predicted from a linear combination of  
explanatory variables that are connected to the dependent variable via a link function. 
Different link functions can be applied, such as a logarithmic, power, or logit link 
function [29].
Taking into account the above-mentioned losses resulting from mastitis and the 
possibility of  using data mining methods to reduce them, the aim of  the present study 
was to check whether it would be possible to detect cows susceptible to mastitis at an 
early stage of  their utilization on the basis of  selected genotypes and basic production 
records by using BT and RF. Another  aim was to find out whether the inclusion 
of  additional production variables for subsequent lactations would improve detection 
performance of  the models. Finally, the most significant predictors of  susceptibility to 
mastitis were identified and the results obtained by using BT and RF were compared 
with those for the more traditional GLZ model.

MATERIALS AND METHODS

A total of  801 records for Polish Holstein-Friesian Black-and-White cows kept on 
a farm located in the West Pomeranian Province were used in the experiment. The 
animals were housed in an open barn without access to pasture, and fed a total mixed 
ration prepared from maize silage. The ration was supplemented with concentrate and 
diet supplements, whose amount was determined individually for each cow. Water was 
accessible for the cows ad libitum from automatic drinkers. The animals were milked 
twice a day in a herringbone milking parlour and mastitis symptoms for all udder 
quarters were examined during each milking by the staff. All alarming symptoms were 
reported to a veterinarian, who then either confirmed or ruled out clinical mastitis. In 
addition, the cows were dried-off  approx. six weeks prior to the expected calving date 
and antibiotic protection was applied if  mastitis symptoms were visible during the dry-
off  period. No antibiotic therapy was used for the other cows.
The data was collected between September 2003 and April 2008. An initial set of  
990 records was subsequently reduced to 801 records (obtained for the first to third 
lactation) after editing (removal of  erroneous, incomplete or missing data). It should 
be emphasized that only cows which had completed at least the first three lactations 
were retained in the final dataset. The number of  predictors included in the models 
varied depending on the lactation number (only the first lactation, the first and second 
lactation, or all three lactations completed). The following predictors were common 
for all lactation numbers: X1 – LTF – lactoferrin genotype, X2 – TNF - tumour 
necrosis factor alpha genotype, X3 – LYZ – lysozyme genotype, X4 – DEF – combined 
defensin genotype, X5 – HF – percentage of  HF genes in a cow’s genotype (obtained 
from farm documentation), X6 – SIRE – cow’s sire rank based on the average somatic 
cell count (SCC) of  his daughters, X7 – CALS – the first calving season. The predictors 
that differed between lactations were as follows: X8 – DIM1 – days in milk (days) 
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and X9 – MILK1 – milk yield (kg) for the first lactation; X8 –  DIM2 – average days 
in milk (days) and X9 – MILK2 – average milk yield (kg) for the first and second 
lactation; X8 –  DIM3 – average days in milk (days) and X9 – MILK3 – average milk 
yield (kg) for the first, second and third lactation (kg). The response variable (Y – 
MAST) was a category of  susceptibility to mastitis: susceptible (mastitis) or immune 
(healthy). The cows from the “healthy” category had never suffered from mastitis 
during the first three lactations. As previously mentioned mastitis was diagnosed by a 
veterinarian and classified as acute, chronic or drying-off  with antibiotic protection. 
The means and standard deviations of  continuous predictors are presented in Table 
1, whereas the distribution of  categorical predictors and that of  the response variable 
are given in Table 2. TNF-α, mLYZ and LTF genotypes were determined according 
to the procedures described by Wojdak-Maksymiec et al. (2013) [19], whereas DEF 
genotypes were assayed according to Wojdak-Maksymiec et al. (2012) [30].

Table 1. Means and standard deviations of  continuous predictors for the training and test sets

Set Number of  
lactations Training (nL=606) Test (nT=195) Total (n=801)

Predictor Mean SD Mean SD Mean SD

HF1 (%) 1, 2, 3 85.79 13.93 88.16 12.31 86.36 13.58

SIRE 1, 2, 3 164.4 76.6 166.7 74.9 165.0 76.1

DIM1 (days) 1 339.2 67.1 348.8 76.7 341.5 69.6

MILK1 (kg) 1 9746.9 2155.6 10003.9 2402.7 9809.5 2219.5

DIM2 (days) 2 344.9 53.1 349.3 59.3 346.0 54.7

MILK2 (kg) 2 10594.7 2054.5 10790.1 2195.9 10642.3 2090.1

DIM3 (days) 3 341.1 45.1 345.0 52.6 342.1 47.0

MILK3 (kg) 3 10833.4 1885.7 11108.7 2071.5 10900.5 1934.9

1 – the names of  variables and their variants are described in the Materials and Methods section.

In brief, DNA isolation was performed with ZymoResearch Genomic DNA Kit™ 
(ZymoResearch, USA) using Fast-Spin column technology. Next, SimpleProbe real-
time PCR assays were developed to determine TNF-α, mLYZ and LTF genotypes. 
PCRs were carried out in a LightCycler 2.0 (Roche Molecular Systems Inc., Pleasanton, 
USA). Each batch consisted of  31 samples and a negative control (water) in 20µl 
capillary tubes. The products were analyzed using real-time fluorescence readout. 
Amplification was made with Qiagen® Multiplex PCR Kit (Qiagen GmbH, Hilden, 
Germany). The PCR mix (10 µl) for LTF and mLYZ contained: 5 µl 2× Qiagen PCR 
Master Mix (final concentration of  3 mM MgCl2); 1 µl each primer (0.2 µM); 1 µl 
SimpleProbe (0.2 µM); 1 µl water. The thermal profile included: initial denaturation – 
95°C/15 min; amplification – 45 cycles: denaturation 95°C/20 s, annealing 57°C/30 s, 
and elongation 72°C/40 s; melting – 95°C, 40°C and 80°C with a ramp rate of  0.1°C/
min; cooling – 30 s.
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Table 2. Distribution of  categorical predictors and the response (output) variable

Set Training (nL=606) Test (nT=195) Total (n=801)

n % n % n %

Variant LTF

AB 276 45.54 86 44.10 362 45.19

AA 330 54.46 109 55.90 439 54.81

TNF

CC 193 31.85 72 36.92 265 33.08

CT 284 46.86 87 44.62 371 46.32

TT 129 21.29 36 18.46 165 20.60

LYZ

CC 584 96.37 179 91.79 763 95.26

CT 22 3.63 16 8.21 38 4.74

DEF

DEF1 454 74.92 149 76.41 603 75.28

OTH 152 25.08 46 23.59 198 24.72

CALS

Autumn 133 21.95 43 22.05 176 21.97

Winter 181 29.87 63 32.31 244 30.46

Spring 186 30.69 50 25.64 236 29.46

Summer 106 17.49 39 20.00 145 18.10

MAST – response

Mastitis 355 58.58 122 62.56 477 59.55

Healthy 251 41.42 73 37.44 324 40.45

LTF – lactoferrin genotype, TNF – tumour necrosis factor alpha genotype, LYZ – lysozyme genotype, 
DEF – combined defensin genotype, DEF1 – genotype A1A2/B1B2/C1C2, OTH – other 21 combined 
defensin genotypes (A1A2/B2/C1C2, A2/B1B2/C2, A1A2/B1B2/C1, A2/B1B2/C1C2, A1A2/B1/
C1C2, A1A2/B1B2/C2, A1/B1B2/C2, A1/B1B2/C1, A1/B1B2/C1C2, A1A2/B1B2/C2C2, A1A2/
B2/C1, A2/B2/C1C2, A1/B1/C1C2, A1A2/B1/C1, A1/B1/C1, A1A2/B1B1/C1, A2/B2/C1, A2/
B1B2/C1, A1A2/B1/C2, A1/B2/C1C2, A1A2/B2/C2), CALS – the season of  the first calving, MAST 
– susceptibility to mastitis

For TNF-α, asymmetric real-time PCR was used. The PCR mix contained: 5 µl 
2× Qiagen PCR Master Mix (final concentration of  3 mM MgCl2); 0.5 µl forward 
primer (0.1 µM); 1.5 µl reverse primer (0.3 µM); 0.5 µl SimpleProbe (0.1 µM); 1.5 µl 
water. Q-solution was also used. The following temperature profile was applied: initial 
denaturation – 95°C/15 min; amplification – 45 cycles: denaturation 95°C/30 s, 
annealing 57°C/30 s, and elongation 72°C/60 s; melting – 95°C, 40°C and 80°C with 
a ramp rate of  0.1°C/min; cooling – 30 s.
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To identify β-defensin genotypes, PCR was performed in thermal cyclers manufactured 
by Whatman Biometra GmbH (Gottingen, Germany) with the following set of  
primers (Proligo France SAS): F: 5’-GCCAGCATGAGGCTCCAT-3’ and R: 
5’-AACAGGTGCCAATCTGT-3’. The PCR mix included: 50 ng DNA, 200 μM 
dNTP, 20 pmol primer, 0.75 mM MgCl2, 2 μl 10× Taq1 Buffer, 1 U Taq polymerase 
and water to a volume of  20 μl (Fermentas International INC, Burlington, Canada). 
The PCR was carried out in 35 cycles with the following thermal profile: initial 
denaturation 94ºC/300 s, denaturation 94ºC/60 s, annealing 63.5ºC/60 s, extension 
72ºC/90 s, and final extension 72ºC/60 s. The amplified fragments were then digested 
with TaqI at 65ºC/16 h, electrophoresed on a 2% agarose gel with ethidium bromide, 
and visualized under UV light (Vilber Lourmat Deutschland GmbH, Eberhardzell, 
Germany).
Because the A1A2/B1B2/C1C2 genotype was predominant (approx. 75% of  all cases) 
and all other genotypes had a low frequency of  occurrence, the DEF variable was 
dichotomized into two categories (DEF1 including the A1A2/B1B2/C1C2 genotype 
and OTHER including all the rest of  genotypes). 
The whole dataset of  801 records was randomly divided into two subsets: a training 
set (L) of  606 records (75.7%) and a test set (T) of  195 records (24.3%). The first one 
was used to train machine-learning models and to estimate GLZ parameters, while 
the latter one served as a basis for verifying their prognostic abilities on new data. 
For RF and BT, a subset of  the training set was also randomly created (the so-called 
validation set) in order to monitor the course of  training and prevent overtraining, 
i.e. too close fit of  the model to the training data. The proportion of  mastitic to non-
mastitic records in the whole dataset was approx. 1.5:1. The quality and prediction 
abilities of  RF and BT were compared with a more traditional classification method 
in the form of  a GLZ.
In the case of  BT, the Gini index was used as a measure of  node impurity, the prior 
probabilities were estimated from the training sample, the value of  the learning rate was 
0.1 and the proportion of  randomly selected cases in a subsample was 0.5. Moreover, 
a validation set consisting of  30% of  the total number of  training cases was used. In 
the case of  RF, the number of  randomly selected predictors for each tree in the forest 
was four, the minimum number of  cases in a node was 20, and the minimum number 
of  cases in a child node was five. The other parameters were the same as those for BT. 
The last model used in the present study was a GLZ with a binomial distribution of  a 
dependent variable and a logit link function, which was determined according to the 
following formula [31]:

∑
=

+=
N

i
ii XaaYitP

1
0)(log

      
where: logitP(Y) is the logit of  the probability of  a cow being susceptible to mastitis, 
a0 is an intercept, ai is the model coefficient estimated during its development, and Xi 
is the ith predictor.
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After the model was constructed, we verified its assumptions, i.e. the normal distribution 
of  residuals (with the Shapiro-Wilk test) and the lack of  predictor collinearity (based 
on the variance inflation factor).
To compare the quality of  data mining methods and the GLZ, three basic measures 
were used for the L set, i.e. sensitivity (Se – the proportion of  correctly classified cows 
susceptible to mastitis), specificity (Sp – the proportion of  correctly classified immune 
cows), and accuracy (Acc – the proportion of  correctly indicated animals from both 
categories). Also, a test for proportions was applied to check significant differences 
among the probabilities generated by individual models. Statistical significance was set 
at P≤0.05.
The next step following the model training stage was to identify the variables that were 
most significant for the determination of  a cow’s susceptibility to mastitis. In the case of  
BT, we used an importance measure based on prediction statistics computed for each 
predictor during each split in each successive tree. In the process of  tree construction, 
the predictor yielding the best possible split in a tree node was always selected and 
the mean value of  the prediction statistic was determined for all the variables and all 
successive trees in a boosting sequence. Finally, the importance value for the predictor 
was normalized by assuming the maximum value for the most significant input as 
unity and reducing the values for the remaining predictors accordingly [32]. A similar 
approach based on an importance measure was used to determine the significance of  
predictors in the RF model, whereas the Wald statistic (and its corresponding degrees 
of  freedom) was used for the GLZ models.
In the third stage of  the present study, the models’ performance was verified on 
an independent T set consisting of  new cases which had not been previously used 
during the model construction stage. To evaluate the prediction performance of  
the models, Se, Sp and Acc were computed in the same way as for the L set. In 
addition, the posterior probability of  true positive responses (PSTP) and true negative 
responses (PSTN) was calculated to show the proportion of  cases (cows) assigned 
by the model to one of  the two classes that really belonged to that class. Thus, the 
posterior probabilities indicated the reliability of  predictions. To test the significance 
of  the differences among probabilities, the test for proportions was applied again 
with P≤0.05 as a significance level. Finally, the area under the receiver operating 
characteristic (ROC) curves (AUC) was additionally calculated to assess more easily 
the discrimination power of  the models constructed. AUC is a measure of  a classifier’s 
performance and can be used for comparing the results of  different classification 
schemes. Its maximum value is one, which corresponds to the ROC curve crossing 
the [0.1] point on the plot (100% Se and 0% false alarm rate), whereas the value of  
0.5 indicates very poor model quality [33]. All the computations were performed using 
Statistica® 12 (StatSoft, Inc., Tulsa, OK, USA). 



Zaborski et al.: Identification of  cows susceptible to mastitis based on selected genotypes by using decision trees and a generalized linear model

325

RESULTS

The final number of  basic trees in the BT model was seven, eight and one for the 
first, second and third lactation, respectively, whereas the number of  trees in the RF 
model was 240, 225 and 300, respectively. The coefficients of  the GLZ for the first, 
second and third lactation are given in Tables 3 – 5, respectively. As can be seen from 
these tables, none of  the predictors included in the GLZ models had a statistically 
significant effect on the category of  a dependent variable, i.e. mastitis susceptibility. 
Moreover, although there was no collinearity between predictors (variance inflation 
factor for all explanatory variables in all the three models below four), the assumption 
about the normal distribution of  residuals was violated in all the cases.

Table 3. Estimated GLZ parameters for the first lactation

Variant Estimate Standard error Wald statistic p OR

Intercept -0.8097 0.6975 1.3479 0.2457 0.4450

HF1 0.0069 0.0061 1.2833 0.2573 1.0070

SIRE 0.0011 0.0011 1.0002 0.3173 1.0011

DIM1 -0.0012 0.0018 0.4362 0.5089 0.9988

MILK1 0.0001 0.0001 1.3272 0.2493 1.0001

LTF AB -0.1208 0.0844 2.0469 0.1525 0.8862

TNF
CC 0.1044 0.1236 0.7137 0.3982 1.1101

CT 0.0713 0.1131 0.3979 0.5282 1.0739

LYZ CC 0.1270 0.2218 0.3277 0.5670 1.1354

DEF DEF1 -0.0033 0.0968 0.0011 0.9730 0.9967

CALS

Autumn 0.0691 0.1529 0.2040 0.6515 1.0715

Winter -0.1500 0.1380 1.1808 0.2772 0.8607

Spring 0.1316 0.1390 0.8959 0.3439 1.1406

1 – the names of  variables and their variants are described in the Materials and Methods section, OR – 
odds ratio

In the quality evaluation of  the models, their Se, Sp and Acc based on the L set 
were compared. The respective values for BT, RF and GLZ are given in Table 6. The 
highest Se (i.e. the ability of  the model to indicate correctly susceptible cows) was 
exhibited by RF or GLZ (0.87 – 0.94 depending on the lactation number) and this Se 
differed significantly (P≤0.05) from that for BT in all lactations. On the other hand, BT 
and RF were characterized by the highest Sp (i.e. the ability of  the model to indicate 
correctly resistant cows), which amounted to 0.27 – 0.49 and differed significantly 
(P≤0.05) from that for the GLZ. There was also a significant difference (P≤0.05) in Sp 
between BT, RF and GLZ in the third lactation. Finally, the greatest Acc (the ability 
to indicate properly cows from both categories) was found for RF (0.66 – 0.67), and it 
was significantly different (P≤0.05) from Acc for the other classifiers in all lactations. 
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Table 4. Estimated GLZ parameters for the second lactation

Variant Estimate Standard error Wald statistic p OR

Intercept -0.5713 0.7740 0.5448 0.4605 0.5648

HF1 0.0076 0.0061 1.5534 0.2126 1.0076

SIRE 0.0011 0.0011 1.0782 0.2991 1.0011

DIM2 -0.0016 0.0022 0.4865 0.4855 0.9984

MILK2 0.0000 0.0001 0.5521 0.4574 1.0000

LTF AB -0.1249 0.0843 2.1925 0.1387 0.8826

TNF
CC 0.1060 0.1233 0.7393 0.3899 1.1119

CT 0.0698 0.1131 0.3810 0.5371 1.0723

LYZ CC 0.1264 0.2218 0.3245 0.5689 1.1347

DEF DEF1 0.0030 0.0966 0.0010 0.9753 1.0030

CALS

Autumn 0.0639 0.1528 0.1750 0.6757 1.0660

Winter -0.1479 0.1380 1.1487 0.2838 0.8625

Spring 0.1379 0.1388 0.9860 0.3207 1.1478

1 – the names of  variables and their variants are described in the Materials and Methods section, OR – 
odds ratio

Table 5. Estimated GLZ parameters for the third lactation

Variant Estimate Standard error Wald statistic p OR

Intercept -1.1068 0.8593 1.6591 0.1977 0.3306

HF1 0.0071 0.0061 1.3586 0.2438 1.0071

SIRE 0.0011 0.0011 0.9879 0.3202 1.0011

DIM3 -0.0007 0.0026 0.0824 0.7741 0.9993

MILK3 0.0001 0.0001 1.2267 0.2681 1.0001

LTF AB -0.1197 0.0849 1.9863 0.1587 0.8872

TNF
CC 0.1010 0.1231 0.6733 0.4119 1.1063

CT 0.0743 0.1129 0.4329 0.5106 1.0771

LYZ CC 0.1446 0.2233 0.4195 0.5172 1.1556

DEF DEF1 0.0017 0.0965 0.0003 0.9860 1.0017

CALS

Autumn 0.0657 0.1529 0.1846 0.6674 1.0679

Winter -0.1578 0.1383 1.3025 0.2538 0.8540

Spring 0.1321 0.1389 0.9041 0.3417 1.1412
1 – the names of  variables and their variants are described in the Materials and Methods section, OR – 
odds ratio

Some differences in Se were also observed between lactations. Se for BT in the first and 
second lactation (0.71) was significantly higher (P≤0.05) than that in the third lactation 
(0.62), whereas the opposite trend was observed for Sp. In the case of  RF, significantly 
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higher Se (P≤0.05) was recorded in the first (0.94) and third (0.93) lactation compared 
with the second one (0.87), while Sp was significantly higher (P≤0.05) in the second 
lactation (0.37) in comparison with the third one (0.27). No significant differences in 
any probability between lactations were revealed for the GLZ.

Table 6. Model quality on the training set

Lactation 1 Lactation 2 Lactation 3

 Se Sp Acc Se Sp Acc Se Sp Acc

BT 0.7099Aa 0.3665Aa 0.5677a 0.7099Aa 0.3904Aa 0.5776a 0.6225Ba 0.4861Ba 0.5660a

RF 0.9380Ab 0.2988a 0.6733b 0.8676Bb 0.3665Aa 0.6601b 0.9324Ab 0.2709Bb 0.6584b

GLZ 0.9155b 0.1474b 0.5974a 0.9155b 0.1394b 0.5941a 0.9070b 0.1434c 0.5908a

Se – sensitivity, Sp – specificity, Acc – accuracy, BT – boosted classification trees, RF – random forest, 
GLZ – generalized linear model, a, b, c – different small letters within columns denote statistical 
significance at P≤0.05, A, B – different capital letters within rows denote statistical significance at P≤0.05

The next stage of  the present study was to identify the most influential predictors of  
susceptibility to mastitis for the tree models and the GLZ. The results for BT and 
RF are shown in Figs. 1 and 2, respectively. In both cases, MILK and DIM were the 
most significant factors affecting predisposition to mastitis, followed by SIRE and 
HF, although the detailed sequence of  importance varied slightly between lactations. 
CALS and, more importantly, the genotypes were ranked much lower. The sequence 
of  predictors for the GLZ is shown in Fig. 3, but none of  them had a statistically 
significant effect according to the Wald test.

Figure 1. Predictor importance for boosted classification trees
* - predictors differed according to the lactation number (total milk yield and days in milk 
for the first lactation, average milk yield and days in milk for the first and second lactation, or 
average milk yield and days in milk for the first, second and third lactation)
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After assessing predictor importance on the L set, the models’ detection performance 
was evaluated on the independent T test, whose cases had not been used previously 
for model construction. Such a set made it possible to verify objectively the models’ 
capacity to indicate cows susceptible to mastitis. The results of  this analysis are shown 
in Table 7. The only significant differences (P≤0.05) between the models were found 
in Se and Sp. The highest Se (0.84 – 0.89) was observed for RF and GLZ in the first 

Figure 3. Predictor importance for the generalized linear model
* - predictors differed according to the lactation number (total milk yield and days in milk 
for the first lactation, average milk yield and days in milk for the first and second lactation, or 
average milk yield and days in milk for the first, second and third lactation)

Figure 2. Predictor importance for random forest
* - predictors differed according to the lactation number (total milk yield and days in milk 
for the first lactation, average milk yield and days in milk for the first and second lactation, or 
average milk yield and days in milk for the first, second and third lactation)
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and third lactation, whereas a significant difference in Se in the second lactation was 
revealed between BT and GLZ. On the other hand, BT was characterized by the 
highest Sp (0.21 – 0.40), which was particularly evident in the first and third lactation. 
No other significant differences in the analyzed probabilities among various model 
types were observed on the T set. However, some significantly different Se and Sp 
values were noted for the same model types in different lactations: Se for BT was 
significantly lower (P≤0.05) in the third lactation (0.62) compared with the second one 
(0.72), while the opposite difference in Sp for the same model type existed between the 
first (0.40) and the second (0.21) lactation (P≤0.05). No other differences depending 
on lactation number were found.

Table 7. Model detection performance on the test set

Se Sp PPSTP PPSTN Acc AUC

lactation 1

BT 0.6557a 0.3973Aa 0.6452 0.4085 0.5590 0.5583

RF 0.8689b 0.1370b 0.6272 0.3846 0.5949 0.4805

GLZ 0.8934b 0.0822b 0.6193 0.3158 0.5897 0.4426

lactation 2

BT 0.7213Aa 0.2055Ba 0.6027 0.3061 0.5282 0.5090

RF 0.7951 0.1781 0.6178 0.3421 0.5641 0.4268

GLZ 0.9016b 0.0685b 0.6180 0.2941 0.5897 0.4373

lactation 3

BT 0.6230Ba 0.3151a 0.6032 0.3333 0.5077 0.4695

RF 0.8443b 0.1096b 0.6131 0.2963 0.5692 0.4798

GLZ 0.8689b 0.0685b 0.6092 0.2381 0.5692 0.4175

Se – sensitivity, Sp – specificity, PPSTP – posterior probability of  true positive response, PPSTN – 
posterior probability of  true negative response, Acc – accuracy, AUC – area under the receiver operating 
characteristic curve, BT – boosted classification trees, RF – random forest, GLZ – generalized linear 
model, a, b – different small letters within columns denote statistical significance between models at 
P≤0.05, A, B – different capital letters within columns denote statistical significance between lactations 
at P≤0.05

The last stage of  the present study was the calculation of  AUC for the three model types 
evaluated. The highest AUC values were observed for BT in the first two lactations 
(0.51 – 0.56), whereas those for all the other models in all three lactations were below 
0.5, which confirms rather poor detection performance of  the constructed classifiers.

DISCUSSION

In general, it should be noted that the initial hypothesis on the possibility of  using the 
four genotypes (lactoferrin, lysozyme, tumour necrosis factor alpha and defensins) 
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together with a few additional predictors available at an early stage of  animal 
development (the proportion of  HF genes, a sire’s tendency towards transmitting 
high SCC to his daughters) supplemented with basic production records was not 
confirmed. The results obtained for the detection performance of  the three models 
investigated in the present study were relatively poor, taking into account the Acc 
on the T set and, especially, its corresponding AUC. The AUC value below 0.5 in 
most cases shows that the model did not discriminate any better than a random guess. 
Although Se was relatively high for all the models on the T set (0.62 – 0.90), it was 
accompanied by low Sp (0.07 – 0.40), which means that if  such decision-support 
tools were used in practice, many cows would be classified incorrectly as susceptible 
to mastitis (so-called false alarms) despite their actual resistance to mastitis (at least as 
evaluated for the first three lactations). The inclusion of  additional information on the 
average milk yield and lactation length for the two subsequent lactations did not lead 
to any substantial improvement in the model performance either. However, it was not 
possible to utilize this information in the form of  separate predictors (e.g. milk yield 
for the first lactation and milk yield for the second lactation) due to the limited sample 
size. It is difficult to compare directly the results of  the present work with those of  
other authors because most research in this field [1,34-39] has been aimed at detecting 
single mastitis cases on the farm rather than diagnosing cows that are susceptible to 
this disease. Nevertheless, some comparisons can be made. In the study by Chagunda 
et al. (2006) [40] on the application of  a dynamic deterministic biological model to 
mastitis detection using lactate dehydrogenase as a disease indicator, Se and Sp were 
0.82 and 0.99, respectively, at a threshold mastitis risk of  0.7. On the other hand, in 
the work of  Krieter et al. (2007) [35] on mastitis detection by artificial neural networks 
based on milk electrical conductivity and flow rate, the Sp on the T set was 0.51 – 0.75 
at the assumed minimal Se of  0.80, whereas Cavero et al. (2008) [34], using the same 
method and similar inputs, obtained Se in the range of  0.63 to 0.93 and Sp ranging 
from 0.38 to 0.87, depending on the mastitis criterion (SCC above 100,000 cells×ml-1 
or above 400,000 cells×ml-1), so these values were, in general, much higher than 
those in our study. Still higher detection performance was characteristic of  the neural 
networks constructed by Sun et al. (2010) [41], for which Se, Sp and Acc were 0.79 – 
0.87, 0.91 – 0.92 and 0.87 – 0.91, respectively, depending on the input variables used 
and the network structure. Another detection and monitoring model based on the on-
line recording of  SCC [42] yielded an Se of  0.28 to 0.43 when reporting new mastitis 
cases, and Se between 0.55 to 0.89 when indicating on-going intramammary infections. 
The lowest proportion of  false alarms observed in this study was 0.07. Finally, Se and 
Sp of  decision tree algorithms evaluated through a 10-fold cross-validation or on a 
separate test set were 0.05 – 0.57 and 0.93 – 1.00, depending on the tree structure 
and misclassification costs [43] as well as 0.40 – 0.67 and 0.99, depending on the time 
window in which mastitis cases were observed [44].
As for the AUC, which was very small in the present study, Yang et al. (1999) [39] 
reported AUC values ranging between 0.77 and 0.87 for different proportions of  
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mastitic to non-mastitic records in the training set, while Kamphuis et al. (2010) [43] 
obtained transformed partial AUC values (with Sp set at above 0.97) ranging between 
0.56 and 0.65, depending on the model structure and misclassification costs.
On the other hand, such a poor result obtained in the present study is not a complete 
surprise since resistance/susceptibility to mastitis is a complex polygenic trait and it 
should not be expected that the polymorphisms of  four selected genes will suffice to 
distinguish accurately between these two health categories. The small effect of  genetic 
predictors on the class of  response variable was also confirmed by the sequence of  
explanatory variables in the tree models where milk yield, lactation length, sire and 
proportion of  HF genes were ranked high, with the first calving season and genotypes 
at the last positions. Moreover, none of  the analyzed explanatory variables turned 
out to have a significant effect on the predisposition to mastitis in the GLZ model 
based on a more traditional parametric approach to classification tasks, which served 
as the reference classifier in the present study. Another limitation which has already 
been mentioned was the relatively small sample size (only 801 records from one herd), 
which also made it more difficult to observe any significant relationships among the 
investigated variables. 
The models applied in the present study (boosted classification trees, random forest, 
and generalized linear model) showed low accuracy in detecting cows susceptible to 
mastitis. Moreover, adding more information to the models (the average milk yield 
and days in milk for the subsequent lactations) did not improve their performance 
significantly. Also, the effect of  the selected genotypes (lactoferrin, tumour necrosis 
factor alpha, lysozyme, and combined defensin genotypes) on susceptibility to mastitis 
was relatively small, and therefore more discriminating predictors (including more 
genotypes) and a larger sample size will have to be used in future research in order to 
detect problematic animals more accurately.
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IDENTIFIKACIJA OSETLJIVOSTI KRAVA NA MASTITIS 
ZASNOVANA NA ODABRANIM GENOTIPOVIMA 
KORIŠĆENJEM SISTEMA ODLUKE I GENERALIZOVANOG 
LINEARNOG MODELA

ZABORSKI Daniel, PROSKURA Witold Stanisław, WOJDAK-MAKSYMIEC 
Katarzyna, GRZESIAK Wilhelm

Cilj ispitivanja je bio da se: 1) proveriti mogućnost detektovanja, u ranoj fazi eksp-
loatacije, krava prijemčivih na mastitis na osnovu odabranih genotipova i proizvodnih 
rezultata u prve tri laktacije, i uz upotrebu metoda objedinjavanja podataka (boosted 
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classification trees – BT and random forest – RF), 2) proveri da li uključivanje nekih drugih 
proizvodnih promenljivih veličina tokom kasnijih laktacija može da poboljša detek-
ciju performansi modela, 3) identifikuju najznačajnije osobine koje mogu da predvide 
prijemčivost na mastitis, 4) uporede rezultati dobijeni upotrebom BT i RF, sa onima 
koji su dobijeni tradicionalnom linearnom metodom (GLZ). Ukupno je analiziran 801 
podatak koji se odnosio na poljsko frizijsko crno-belo goveče. Maksimalna osetljivost, 
specifičnost i tačnot testa bila je za BT: 72.13%, 39.73%, 55.90%, za RF 86.89%, 
17.81% i 59.49% i za GLZ 90.16%, 8.22% i 58.97%. Obuhvatanje drugih promen-
ljivih veličina nije značajno povećalo značajnost efekta modela. Najznačajniji elementi 
predviđanja prijemčivosti na mastitis su bili: količina mleka, broj dana u laktaciji, ocena 
bika i procenat holštajn-frizijskih gena. Sa druge strane, sezona telenja kao i genoti-
povi (laktoferin, α-faktor nekroze tumora, lizocim i defenzini) su daleko manje bili 
značajni. Primenjeni modeli, su pokazali nizak nivo tačnosti u detekciji krava koje su 
bile prijemčive na mastitis. Može se zaključiti da je potrebno da se obuhvate neki drugi 
kriterijumi i elementi na osnovu kojih bi se uspešnije mogla predvideti povećana os-
etljivost na mastitis kod krava. 


