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This animal study was conducted in order to verify the effects of  combining high-
frequency oscillatory ventilation and prone positioning and the order of  application 
of  both methods on blood gas exchange in an experimental model of  acute respiratory 
distress syndrome.
Forty domestic pigs were used for the study. Saline solution washout was produced 
by bilateral lung lavage. The lavage process was repeated until adequate impairment 
of  gas exchange (defi ned as PaO2 < 100 mmHg) 60 min following the last lavage was 
achieved. Subsequently, lung injury was established and each model was randomized 
to one of  fi ve groups, with differences in the type of  mechanical ventilation used 
(conventional mechanical ventilation in accordance with the principles of  protective 
lung ventilation or high-frequency oscillatory ventilation) and also in the positioning of  
the experimental model (supine position or mode changing prone and supine positions 
in a ratio 18:6 hours).
The best oxygenation was achieved in the group prone position + high-frequency 
oscillatory ventilation. The most favorable combination in terms of  carbon dioxide 
elimination is the high-frequency oscillatory ventilation + prone position. The best 
results in terms of  oxygenation index value were obtained in the combination of  a 
prone position with the high-frequency oscillatory ventilation and in the prone position.
In conclusion, by using combinations of  prone positioning and high-frequency 
oscillatory ventilation, one can achieve better blood gas parameters during acute 
respiratory distress syndrome.
Key words: acute respiratory distress syndrome; high frequency oscillatory ventilation; 
prone position, experimental model; gas exchange

INTRODUCTION

Acute respiratory failure (ARF) causes signifi cant morbidity and mortality in children, 
often leading to acute respiratory distress syndrome (ARDS) and other organ system 
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failures [1].  Incidences of  ARF and ARDS in developed countries are 0.7%–4.2% of  
the total PICU admissions and the mortality varies by about 20%–30% [2].  
Gas exchange is a process through which a given amount of  oxygen (O2) is exchanged 
with a comparable amount of  carbon dioxide (CO2). For an effi cient mechanism, 
there must be an optimum matching between ventilation and perfusion. In normal 
conditions the amount of  alveolar ventilation nearly equals the cardiac output value 
producing a global ventilation/perfusion (VA/Q) ratio close to unity [3]. Ventilator 
settings are often adjusted to achieve predestined arterial blood gas tensions. This 
approach is adequate with respect to oxygenation and carbon dioxide elimination [4].   
The prone position (PP) has been demonstrated to cause an increase in both end-
expiratory lung volume and alveolar recruitment. Changes in patient positioning can 
have a serious effect on oxygenation and ventilation in severe ARDS [5].  
High-frequency oscillatory ventilation (HFOV) is one form of  ventilation aimed at 
treating poor oxygenation associated with ARDS. This ventilation treatment strategy is 
used to recruit alveoli while reducing sheer forces within the lung, which can exacerbate 
ARDS [6].   Patient’s lungs are held infl ated to maintain oxygenation. Carbon dioxide is 
cleared by small volumes of  gas moved in and out of  the respiratory system at 3 to 15 
Hz. This action is thought to minimize the repeated process of  opening and collapsing 
of  lung that causes lung damage during conventional mechanical ventilation [7]. 
The aim of  this our study was to verify the effect of  combining HFOV and prone 
positioning and order of  application of  both methods on blood gas exchange in an 
experimental model of  ARDS.

MATERIAL AND METHODS

The study protocol was approved by the Institutional Review Board for the care of  
animal subjects (University of  Veterinary and Pharmaceutical Sciences Brno). The 
care and handling was in accord with National Institutes of  Health guidelines for 
ethical animal research. 
Forty anesthetized domestic pigs (mean weight, 38 ± 5kg SD) were used for the study. 
The animals were premedicated with intramuscular tiletamin-zolazepam (Zoletil 50®, 
Virbac) and xylazin (Rompun®, Bayer). Anesthesia was induced with propofol (1% 
Propofol, Fresenius) via an ear vein.  The trachea was isolated and cannulated using 
a 9-mm inner-diameter cuffed endotracheal tube. After the airway was secured, an 
additional 2 mg/kg bolus of  propofol along with 100 ųg fentanyl (Fentanyl, BBraun) 
was administered. Anesthesia was maintained by continuous infusion of  propofol, 
midazolam (Midazolam, BBraun), and fentanyl throughout the experiment. The 
animals were put in a supine position and administered mechanical ventilation (Siemens 
Servo Ventilator 300; Siemens-Elema AB; Solna, Sweden) in the volume-controlled 
mode (CMV) with a PEEP of  5 cm H2O, an inspiratory/expiratory ratio of  1:2, and a 
fraction of  inspired oxygen of  1.0. A tidal volume of  10 mL/kg and a respiratory rate 
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of  14 to 18 breaths/min were applied to maintain a PaCO2 value within the range of  
35 to 45 kPa. 
Initially, a continuous infusion of  balanced solution at a rate of  10 mL/kg/h was 
administered and increased up to 15 mL/h as indicated by cardiac fi lling pressures. 
Central venous and pulmonary artery pressures were measured using a 7.5F fl ow 
directed thermodilution fi ber optic pulmonary artery catheter (Arrow International, 
Inc.; Cleveland, OH). The right carotid artery was cannulated with a 20-gauge 
catheter (Arrow International, Inc.; Cleveland, OH) for blood sampling and arterial 
pressure monitoring. Continuous ECG monitoring was performed. For hemodynamic 
monitoring, a monitor and corresponding software (Datex-Ohmeda, Finland) were 
used. Cardiac output was measured using the pulmonary artery. Arterial and mixed 
venous blood gases were analyzed (Gastat 600, Techno Medica Co., Ltd., Japan). All 
catheters were intermittently fl ushed with normal saline containing a low dose of  
heparin (10 U/ml of  infusion fl uid) to avoid clotting within the catheters.

Experimental protocol 

After the surgical procedure, a stabilization period of  at least 30 minutes followed and 
then baseline values were obtained.  Saline solution washout (SW) was produced by 
bilateral lung lavage. The endotracheal tube was disconnected from the ventilator, and 
warmed saline solution was instilled from a height of  50 cm until a meniscus was seen 
in the tube. The fl uid was retrieved via gravity drainage after 45s of  apnea followed by 
endotracheal suctioning. Instilled and retrieved volumes were measured. Between the 
lavages, the pigs received manual ventilation with a fraction of  inspired oxygen of  1 
using a self-infl ating bag. The lavage process was repeated until adequate impairment 
of  gas exchange (defi ned as PaO2 < 100mmHg) 60min following the last lavage was 
achieved. Subsequently, lung injury was established and each model was randomized 
to one of  the fi ve groups (eight models in a group), with differences in the type 
of  used mechanical ventilation (conventional mechanical ventilation in accordance 
with the principles of  protective lung ventilation or HFOV), and also in the position 
of  the experimental model (supine position or mode changing prone and supine 
positions in the ratio 18:6 hours). Ventilator settings (CMV) after randomization were 
as follows: tidal volume of  6 mL/kg, respiratory rate of  30 breaths/min, PEEP of  8 
cm H2O, an inspiratory/expiratory ratio of  1:2. The fraction of  inspired oxygen of  
1.0 HFOV (SensorMedics 3100B) was initiated at the following settings: fraction of  
inspired oxygen 1.0; oscillation frequency, 5 Hz; percent inspiratory time, 33%; and 
bias fl ow, 20 L/min. Mean airway pressure was set at 5 cm H2O greater than mean 
airway pressure measured during CMV.
Group 1 (control) was throughout the experiment ventilated conventionally in the 
supine position;
Group 2 (PP) was ventilated fi rst conventionally in mode rotation of  prone (18 hours) 
and then supine position (6 hours);
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Group 3 (HFOV) was throughout the experiment ventilated by HFOV in the supine 
position;
Group 4 (HFOV + PP) was ventilated fi rst in the supine position by HFOV, after 6 
hours was ranked mode alternating prone and supine positions;
Group 5 (PP + HFOV) was ventilated conventionally in mode changing prone and 
supine position. After 6 hours the conventional ventilation was converted to HFOV 
(Figure 1). 

Setting mode of  ventilation was monitored in all animals (CMV: inhaled oxygen 
fraction - FiO2, respiratory rate - RR, tidal volume - VT, peak airway pressure - PIP, 
end-expiratory pressure - PEEP, mean airway pressure - Paw; HFOV: inhaled oxygen 
fraction - FiO2, frequency of  oscillation - f, amplitude - ∆P). 
Systemic arterial pressure, central venous pressure (CVP), pulmonary artery pressure 
(PAP), pulmonary capillary wedge pressure (PAWP) were measured invasively. The 
monitored parameters [PaO2, PaCO2 and oxygenation index (OI = Paw x 100 x FiO2 
/ PaO2)] were recorded after instrumentation (baseline), after induction of  ARDS 
(time 0 h) and always immediately before and 60 minutes after changing position or 
ventilation mode - time 1, 3, 6, 7, 9, 12, 18, 19, 24 hours. 
After fi nishing the protocol, all the animals were sacrifi ced under deep anesthesia with 
a bolus injection of  thiopental followed by 40 ml of  potassium chloride i.v.

Figure 1. Graphical representation of  ventilation techniques and ventilation positions in fi ve 
groups during the 24 hour experimental model of  ARDS
PCV - Pressure Control Ventilation; HFOV - High Frequency Oscillatory Ventilation; PP – 
prone position
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Statistical analysis

Data were analyzed using the ANOVA test. Scale of  values in each of  the groups 
is shown in graph in the form of  mean value and its standard error (SE). To 
comprehensively elucidate the differences in values and dynamics of  evaluated 
parameters in between the groups we divided our data to 4 phases based on the time 
of  performed interventions: Baseline until Hour 0; Hour 0 until Hour 6; Hour 6 until 
Hour 18; Hour 18 until Hour 24.
Scatter analysis was performed for each of  these phases. Signifi cance values for the 
differences in main effects (between groups in the corresponding interval in total, for 
all groups in time) and their interactions (difference in dynamics) were obtained. 
To clarify the signifi cant point of  difference in values, with respect to correction for 
repeated testing, we consequently performed the post-hoc test (Fisher LSD test). Table 
shows test results for 4 examined group pairs together with basic summary statistics 
(count, mean, SE). The pairs of  the examined groups were as follows: 
Pair A: HFOV x PP 
Pair B: HFOV x HFOV+PP 
Pair C: PP x PP+HFOV 
Pair D: HFOV+PP x PP+HFOV 
Data not fulfi lling normality requirements were transformed and the analysis was 
performed with those transformed data. Graph shows data in the transformed scale 
and it also includes the scale in back-transformation for better orientation in the 
original data (Y axis on the right side). Transformation was performed in OI values 
(logarithmic transformation x´=log10(x), values of  the transformed variable are 0=1, 
1=10, 2=100, 3=1000…), arterial and venous blood saturation and lung shunt values 
in percent (ArcSin transformation x´=arcsin(√x), values of  the transformed variable 
are 0°...90°, which is corresponding to 0%...100%).

RESULTS

PaO2 values are shown in Table 1, trends of  values are shown in Figure 2. The best 
oxygenation was achieved in group PP+HFOV, which is comparable with group PP. 
Prone positioning in animals ventilated using HFOV (group HFOV+PP) had only a 
moderate and temporary effect on oxygenation improvement compared with group 
HFOV. Groups PP and HFOV are comparable in terms of  oxygenation.
PaCO2 values in all groups are shown in Table 2, trends of  values are shown in Figure 
3. The most favorable combination in terms of  CO2 elimination was HFOV+PP. 
Reversed usage of  both methods (PP+HFOV) is less effective for CO2 elimination. 
Similarly, as with the effect on oxygenation, the addition of  prone positioning 
in animals ventilated using HFOV (HFOV+PP) had only a moderate effect on 
ventilation improvement compared with group HFOV. Groups PP and HFOV are 
equally effective in CO2 elimination.
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Table 1. ANOVA models results of  partial pressure of  oxygen in arterial blood in each 
experiment phase

PaO
2
 Signifi cance levels

Phase Group Time Group*Time 

1. B -> 0h 0.228 <001 0.144 
2. 0h -> 6h 0.007 <001 0.001 
3. 6h -> 18h 0.023 <001 <0.001 
4. 18h -> 24h 0.577 0.320 0.696 

Figure 2. The course of  PaO2 (kPa) in each group
HFOV – High Frequency Oscillatory Ventilation; PP – prone position

Table 2. Post-hoc comparison of  partial pressure of  oxygen in arterial blood at each time point

PaO
2

Time Pair A Pair B Pair C Pair D
B 0.293 0.216 0.528 0.396
0h 0.944 0.851 0.909 0.981
1h 0.549 0.254 0.780 0.081
3h 0.648 0.160 0.229 0.326
6h 0.729 0.048 0.742 0.018

7h 0.791 0.031 0.788 0.013

9h 0.689 0.181 0.984 0.046

12h 0.647 0.273 0.963 0.079
18h 0.717 0.678 0.457 0.496
19h 0.772 0.431 0.524 0.959
24h 0.786 0.447 0.250 0.562

Abbreviations: B – values   after instrumentation of  the model - baseline; Pair A: HFOV vs. PP; Pair B: HFOV vs. 
HFOV+PP; Pair C: PP vs. PP+HFOV; Pair D: HFOV+PP vs. PP+HFOV

f k



Žurek et al.

313

Oxygenation Index (OI) values are shown in Table 3 and Figure 4. Data were 
logarithmically transformed because in order to allow parametric evaluation in the 
factorial design. That means the lower the OI value (OI = 100 x Paw x FiO2/PaO2), 

Figure 3. The course of  OI (log10 OI) in each group
HFOV – High Frequency Oscillatory Ventilation; PP – prone position

Table 3.  ANOVA models results of  oxygenation index in each experiment phase

Log(OI) Signifi cance levels

Phase Group Time Group*Time 

1. B -> 0h 0.537 <0.001 0.067 
2. 0h -> 6h <0.001 <0.001 <0.001 
3. 6h -> 18h 0.002 <0.001 <0.001 
4. 18h -> 24h 0.364 0.163 0.811 

Figure 4. The course of  PaCO2 (kPa) in each group
HFOV – High Frequency Oscillatory Ventilation; PP – prone position
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the better signs of  oxygenation.  Best results in terms of  OI value were obtained, 
as in terms of  oxygenation, in the prone position and in the combination of  prone 
positioning with HFOV (PP + HFOV). 
Table 4. Post-hoc comparison of  oxygenation index at each time point

Log(OI)

Time Pair A Pair B Pair C Pair D

B 0.293 0.216 0.528 0.396
0h 0.944 0.851 0.909 0.981
1h 0.549 0.254 0.780 0.081
3h 0.648 0.160 0.229 0.326
6h 0.729 0.048 0.742 0.018

7h 0.791 0.031 0.788 0.013

9h 0.689 0.181 0.984 0.046

12h 0.647 0.273 0.963 0.079
18h 0.717 0.678 0.457 0.496
19h 0.772 0.431 0.524 0.959
24h 0.786 0.447 0.250 0.562

Abbreviations: B – values   after instrumentation of  the model - baseline; Pair A: HFOV vs. PP; Pair B: HFOV vs. 
HFOV+PP; Pair C: PP vs. PP+HFOV; Pair D: HFOV+PP vs. PP+HFOV

Table 5.  ANOVA models results of  partial pressure of  carbon dioxide in arterial blood in each 
experiment phase

PaCO
2
 Signifi cance levels

Phase Group Time Group*Time 

1. B -> 0h 0.095 <0.001 0.951 
2. 0h -> 6h 0.023 0.454 0.221 
3. 6h -> 18h 0.138 0.809 0.045 
4. 18h -> 24h 0.526 0.702 0.655 

Table 6. Post-hoc comparison of  partial pressure of  carbon dioxide in arterial blood at each 
time point

PaCO
2

Time Pair A Pair B Pair C Pair D

B 0.477 0.769 0.302 0.587
0h 0.423 0.778 0.067 0.220
1h 0.602 0.055 0.708 0.045

3h 0.438 0.204 0.000 0.000

6h 0.612 0.606 0.220 0.016

7h 0.727 0.608 0.145 0.015

9h 0.670 0.803 0.999 0.429
12h 0.649 0.834 0.656 0.463
18h 0.996 0.995 0.246 0.247
19h 0.818 0.951 0.908 0.754
24h 0.900 0.798 0.196 0.149

Abbreviations: B – values   after instrumentation of  the model - baseline; Pair A: HFOV vs. PP; Pair B: HFOV vs. 
HFOV+PP; Pair C: PP vs. PP+HFOV; Pair D: HFOV+PP vs. PP+HFOV
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DISCUSSION

Animal models provide a bridge between patients and laboratory. A hypotheses 
generated in human studies can be tested directly on animal models, and the results of  
studies can be tested in animal models to assess their relevance in intact living systems. 
Ideally, animal models of  ALI should reproduce the mechanisms of  ALI in humans, 
including the physiological and pathological changes that occur [8]. 
The saline lavage model was developed by Lachmann et al. in 1979 based on the 
observation that ARDS is associated with depletion of  the surfactant from the air spaces 
and reduced concentrations of  surfactant-associated proteins in the bronchoalveolar 
fl uid [9]. The major advantage is that the saline lavage model provides an ideal manner 
to test the effects of  ventilation strategies on the development of  tissue injury because 
the tissue injury results more from the ventilation strategy than from the saline lavage 
[8].  
The aim of  our study was to assess the effect of  combining prone positioning and 
high-frequency oscillatory ventilation on oxygenation and elimination of  carbon 
dioxide. Our main results were as follows: We can reach better oxygenation parameters 
of  the organism with ARDS, as predicted from values of  PaO2 and OI, when using 
conventional ventilation in the prone position (PP) or mainly when using prone 
positioning and high-frequency oscillatory ventilation (PP+HFOV). Changing body 
position from supine to prone alters the ventral-dorsal pleural pressure gradient and 
ultimately the regional trans-pulmonary pressure. These changes occur by altering 
gravitational forces and by reducing the compressive effects of  the heart, mediastinal 
structures and abdominal wall.
For the elimination of  CO2 it is best to use HFOV at fi rst. Figure 3 shows values and 
trends from comparison of  groups on HFOV ventilation and the changes between 
prone and supine positioning. We saw excellent CO2 elimination even in the fi rst 
hours of  our experiment in the group HFOV + PP, where we can see statistically 
signifi cant differences in PaCO2 values in the 1st, 3rd and 6th hour. Most signifi cant for 
CO2 elimination and for successful ventilation is HFOV ventilation, prone positioning 
is not as much contributing in a successful CO2 elimination. We have not found any 
statistically signifi cant differences in PaCO2 values from the 9th hour until 24th hour 
of  our experiment. HFOV improves effi ciency of  alveolar ventilation by a decreased 
physiological dead space.
Since therapeutic alternatives are lacking and the underlying concepts sound 
reasonable, multimodal therapeutic approaches are commonly used for salvage therapy 
in patients with ARDS.  Papazian et al. found that the prone position combined with 
HFOV and pressure-controlled ventilation (PCV) is superior to HFOV and supine 
positioning in terms of  oxygenation, but failed to demonstrate additive effects. 
However, the infl ammatory mediators were elevated during HFOV-prone but not 
during HFOV-supine [10]. This calls for long term experiments with large animals 
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comparing conventional lung protective ventilation and HFOV with and without 
prone positioning looking not only at gas exchange and respiratory mechanics but also 
at histology and infl ammatory mediators.
Another study in 43 patients with ARDS compared three groups of  patients:  a) 
conventional lung-protective mechanical ventilation in the prone position (12 hrs) 
followed by a 12-hr period of  conventional lung-protective mechanical ventilation in the 
supine position (CV prone – CV supine); b) conventional lung-protective mechanical 
ventilation in the supine position (12 hrs) followed by HFOV in the supine position 
(12 hrs) (CV supine – HFOV supine);  and c) conventional lung protective mechanical 
ventilation in the prone position (12 hrs) followed by HFOV in the supine position 
(CVprone-HFOVsupine group). They found that the sequence prone positioning 
followed by HFOV maintained the improvement in oxygenation related to prone 
positioning, whereas there was no persistent improvement when the prone position 
was followed by a 12-hr period of  supine positioning with conventional ventilation 
[11]. According to the study by Ferguson et al., among patients with moderate-to-
severe ARDS, early application of  HFOV was associated with higher mortality than 
in control ventilation strategy targeting lung recruitment with the use of  low tidal 
volumes and high positive end-expiratory pressure [12]. The higher mortality in the 
HFOV group was probably because of  elevated mean airway pressures. 
The importance of  prone positioning may also consist in reducing mortality. In 
patients with severe ARDS, early application of  prolonged prone-positioning leads to a 
signifi cantly decreased 28th-day and 90th-day mortality [13].   In an animal experimental 
study Brederlau et al. evaluated the effects of  prone positioning on gas-exchange, 
hemodynamics and respiratory parameters in HFOV-ventilated pigs with severe lavage 
induced acute lung injury [14]. The authors came to similar conclusions as in the 
present work. They found that HFOV and prone positioning improves oxygenation 
at a lower P mean than HFOV and supine positioning.  This improvement is achieved 
with lower mean airway pressure, which also correlates with our fi ndings - oxygenation 
expressed OI. In contrast to the cited works, which found no differences in the 
elimination of  CO2 in both groups, we have found a good infl uence of  HFOV on 
ventilation, which is slightly potentiated by a subsequent use of  prone positioning 
(HFOV + PP).  Inverted use of  both methods, a fi rst PP and then HFOV, resulted in 
a small effect on CO2elimination.
The major limitation of  this study is that it was performed on a piglet model. The 
results can not be directly applied to other models or to humans. It is possible that the 
use of  a different model might yield different results. In patients (except newborns) 
not surfactant defi ciency, but alveolar fl ooding, is the predominant mechanism in 
ARDS-development. In addition, the high inspiratory oxygen fraction used in this 
study may have promoted the occurrence of  reabsorption atelectasis especially at low 
levels of  PEEP (8cm H2O) [15]. Titration of  PEEP remains a controversial issue, thus 
optimal PEEP might be different in the prone position. 
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CONCLUSIONS

In this saline lavage induced porcine model of  ARDS, we showed in a clinically 
relevant scenario, that the combination of  HFOV and prone positioning improved 
oxygenation and CO2 elimination. Having in view a long history of  failed multimodal 
treatment approaches in ARDS research, we have concluded from our results that a 
combination of  HFOV and prone positioning seems promising and should be further 
investigated systematically and compared to conventional lung protective ventilation. 
Long term trials in large animals and acquisition of  histological and immunological 
data seem clearly justifi ed.
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EFEKTI KOMBINACIJE LEŽEĆEG POLOŽAJA I OSCILATORNE 
PLUĆNE VENTILACIJE VISOKE FREKVENCIJE NA RAZMENU 
GASOVA U KRVI NA MODELU SINDROMA AKUTNOG 
RESPIRATORNOG ŠOKA KOD SVINJA

ŽUREK Jiří, DOMINIK Petr, KOŠUT Peter, ŠEDA Miroslav, FEDORA Michal

Ispitivanje je sprovedeno sa ciljem utvrđivanja efekata kombinacije oscilatorne ventilacije 
visoke frekvencije i ležećeg položaja, na razmenu gasova u krvi u eksperimentalnom 
modelu sindroma akutnog respiratornog šoka, kod 40 svinja. Urađena je bilateralna 
lavaža pluća fi ziloškim rastvorom. Postupak lavaže je ponovljan dok nije postignut 
adekvatan poremećaj razmene gasova (defi nisano kao PaO2<100 mmHg) 60 minuta 
posle poslednje lavaže. Posle toga, uočena je ozleda pluća i svaki model je nasumično 
raspoređen u jednu od pet grupa sa različitim tipom mehaničke ventilacije  kao i 
prema poziciji eksperimentalnog modela (leđni položaj ili izmena stomačnog i leđnog 
položaja).  Najbolja oksigenacija je postignuta u grupi sa stomačnim položajem + 
oscilatorna ventilacija visoke frekvencije. Najbolja kombinacija u odnosu na eliminaciju 
ugljen dioksida je bila oscilatorna ventilacija visoke frekvencije + stomačni položaj. 
Najbolji rezultati u odnosu na indeks oksigenacije dobijeni su primenom kombinacije 
stomačnog položaja + oscilatorna ventilacija visoke frekvencije kao i samo stomačni 
položaj. Može da se zaključi da se primenom kombinacije stomačnog položaja i 
oscilatorne ventilacije visoke frekvencije dobijaju bolje vrednosti gasova u krvi tokom 
sindroma akutnog respiratornog šoka.
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