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Hen eggs are widely used, not only for human consumption, but also as an important 
material in food production and in pharmaceutical and cosmetics industry. Cystatin is a 
biologically active component of  egg white, mostly used as an inhibitor of  papain-like 
cysteine proteases. It was isolated from chicken egg white and has later been used in the 
nomenclature of  structurally and functionally related proteins. Cystatins from animals, 
including mouse, rat, dog, cow and chicken egg white have been isolated and recently 
used in foodstuffs and drug administration. Cystatin has found its place and use in 
medicine due to its antimicrobial, antiviral and insecticidal effects, for the prevention of  
cerebral hemorrhage and control of  cancer cell metastasis.
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INTRODUCTION

Chicken egg white cystatin was characterized in the early 80’s. Since then, the knowledge 
of  a superfamily of  similar proteins present in mammals, birds, fish, insects, plants and 
some protozoa has expanded and their properties as potent peptidase inhibitors have 
been firmly established. Today, 11 functional chicken cystatin relatives are known in 
man. The type 1 cystatins (A and B) are mainly intracellular, type 2 cystatins (C, D, 
E, F, S, SN, M and SA) extracellular, and type 3 cystatins (L- and H-kininogen) are 
intravascular proteins [1]. All cystatins inhibit cysteine peptidases of  the papain (C1) 
family and some also inhibit the legumain (C13) family of  enzymes [2]. Such proteases 
play key roles in the intracellular protein degradation (cathepsins B, H, L), are pivotal 
in the remodeling of  bone (cathepsin K) and may be instrumental in controlling 
antigen presentation (cathepsin S, mammalian legumain) [3]. The 3D structures 
of  two of  the human cystatins, cystatin C and D, have recently been determined. 
These structures together with results from mutagenesis studies shed light on the 
following: 1) The C1 peptidase binding site, explaining the inhibitory specificities of  
cystatins; 2) The location and nature of  the C13 peptidase binding site; and 3) The 
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mechanism behind the syndrome Hereditary Cystatin C Amyloid Angiopathy, which 
results when a mutation in the cystatin C gene causes production of  L68Q-cystatin C 
and leads to amyloidosis and brain hemorrhage in young adults [4]. There are many 
examples of  biologically active food proteins, with physiological significance beyond 
the pure nutritional requirements that concern available nitrogen for normal growth 
and maintenance. Moreover, there are many physiologically active peptides, derived by 
protease activity from various food protein sources; however, relationships between 
structural properties and functional activities have not been completely elucidated. 
Many bioactive peptides have in common structural properties that include a relatively 
short peptide residue length (e.g. 2-20 amino acids), possessing hydrophobic amino 
acid residues in addition to proline, lysine or arginine groups [5]. Bioactive peptides 
are also resistant to the action of  digestive peptidases. Antihypertensive peptides, 
known as Angiotensin I converting enzyme (ACE) inhibitors, have been derived from 
egg white, milk, corn and fish protein sources [6]. Peptides with opioid activities are 
derived from wheat gluten or casein, following digestion with pepsin. Exorphins, or 
opioid peptides derived from food proteins such as wheat and milk (e.g. exogenous 
sources) have a structure similar to endogenous opioid peptides, with a tyrosine residue 
located at the amino terminal or bioactive site. Immunomodulatory peptides derived 
from tryptic hydrolysates of  rice and soybean proteins act as to stimulate superoxide 
anions (reactive oxygen species-ROS), which triggers non-specific immune defense 
systems. Antioxidant properties that prevent peroxidation of  essential fatty acids have 
also been shown for peptides derived from milk proteins. The addition of  a Leu or Pro 
residue to the N-terminus of  a His-His, dipeptide will enhance the antioxidant activity 
and facilitate further synergy with non-peptide antioxidants (e.g. BHT). Proteins from 
egg albumen are being researched in the preparation of  biological polymer films for 
use in food packaging. [7]. 

Cysteine proteinases

Enzymes constitute a specialized and diverse group of  proteins that have several 
roles in many physiological processes. Proteolytic enzymes such as proteinases which 
are involved in digestive processes, proenzymes activation, release of  physiologically 
active peptides, complement activation, inflammation processes and others are part 
of  this protein group [8]. Proteinases are grouped into four categories according to 
the essential amino acid residue at their active sites, the optimum pH range of  activity, 
amino acid sequences similarities, similarity to inhibitors. Proteinases are classified 
as Aspartic peptidases (A), Cysteine peptidases (C), Metallopeptidases (M), Serine 
peptidases (S), Mixed catalytic type (P) and Unknown type (U) [9]. Examples of  these 
have been identified in plants, insects, microorganisms and are all similar to those 
found in mammals (Table 1).
Inhibitor proteins have been found for each of  the four mechanistic classes of  
proteinases and a large number of  proteinases inhibitors are directed towards serine- 
and cysteine proteinases [12]. In contrast, only a few of  those inhibitors are known for 
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aspartic- and metal-proteinases [13]. Studies on plant protein inhibitors are important 
due their involvement in defense mechanisms and in the protection of  seeds’ reserves 
from premature hydrolysis [14]. 

Table 1. Groups of  proteinases

Proteinases Amino Acid in 
active site

pH optimum 
(range) Proteins

Serine proteinase Ser; His 7-9 Trypsin, Chymotrypsin, Elastase, 
Cathepsin(+) G

Cysteine proteinase Cys 4-7 Papain*, Ficin, Bromelain, Ananin, 
Cathepsin(+) B, C, H, K, L, O, S and W 

Aspartic proteinase (2) Asp, Try Below 5 Cathepsin(+) D and E, Renin, Pepsin

Metallo-proteinase Metal ion 7-9 Carboxipeptidases A and B, aminopeptidases

*Papain isolated from the latex and fruit of  Carica papaya have been used to identify cysteine proteinase 
inhibitor of  the plant origin; 
(+)The term “Cathepsin” is generally used for the lysosomal cysteine protease [10,11].

Cystatins

The term cystatin refers to proteins that specifically inhibit the activity of  papain and 
related cysteine proteinases (cathepsin B, H and L, ficin, bromelain). Their presence in 
microorganisms, animal and plant species may be ubiquitous [15]. These proteins are all 
related by structure and function to an inhibitor of  cysteine proteinase, which was first 
described in egg white and was later called chicken egg white cystatin [16]. Cystatins 
have been found to be evolutionarily related, forming the “cystatin superfamily”. 
Members of  the superfamily may be divided into three groups (or families) of  proteins 
more closely related which comprise the animal cystatins [17,18] and one family 
from plant cystatins [19]. The classification in families is based on primary sequence 
similarities, molecular masses, number of  disulfide bonds and subcellular localization. 
Others families are suggested on the base of  these aspects.

Four families of cystatins

Type 1 cystatins are also called stefins. This type includes cystatin A and B and stefin C. 
Cystatins of  this group do not contain disulfide bridges and carbohydrate residues in 
their structure. They are also the smallest group of  cystatins, with a molecular mass of  
around 11 kDa Stefins consist of  about 100 amino acids and are found in the cytosol 
[20,21]. 
Type 2 cystatins are characterized by the presence of  two disulfide bridges and some 
members of  this group of  cystatins are glycosylated. Their molecular mass is about 13-
24 kDa. The size of  the cystatins in this group is approximately 115 aa., the presence 
of  a signal peptide in their structure enables the secretion of  these molecules outside 
the cell. Their relatively high concentration is found in chicken egg white. These types 
of  cystatins are: C, D, S, SN, SA, E, F, and M. [22,23].
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Type-3 cystatins (kininogens) have been isolated from the plasma and act as thiol 
protease inhibitors. Kininogens are superior to all other types of  cystatins in terms of  
complexity. Cystatins from this group can be divided depending on their molecular 
mass as  high molecular weight (88-114 kDa) and low molecular weight (50-68 
kDa) [22]. These proteins are known to have domains in tandem that resulted from 
two duplications of  the genetic material of  family-2 cystatins [24]. Kininogens are 
characterized by glycosylation, the presence of  the bradykinin moiety and disulfide 
bridges. As with type 2, there is also a signal peptide enabling their secretion. The 
kininogens are a very important factor in blood coagulation [25]. Existing data proved 
the homology between the sequence of  selected type 2 and 3 cystatins and the active 
site of  Bowman-Birk type trypsin inhibitor [26]. There are also cysteine proteinase 
inhibitors with a similar primary structure to those of  the Kunitz-type soybean trypsin 
inhibitor family [27]. All cystatins have a conserved pentapeptide domain Gln-Val-
Val-Ala-Gly (especially type1 and 3 cystatins) and homologous sequences (e.g. Gln-
X-Val-Y-Gly) which is mainly characterized by cysteine proteinase inhibitors in type 2 
cystatins [28,19]. This pentapeptide and dipeptide regions could be important for the 
binding to cysteine proteinase [29]. Other conserved sequences are Phe-Ala-Val from 
the carboxy terminus and also the Phe-Try dipeptide from the amino terminus, which 
is characterized by type 2 cystatins, but are absent in type 1 and 3. 

Table 2. Major characteristics of  mammalian cystatins [1,36]

Characteristics Family 1 Family 2 Family -3 

Amino acid residues About 100 115 – 120 3 cystatin like domains 
Molecular weight 
(kDa) 

About 11 13 – 14 High: 88-114 
Low: 50-68 

Disulfide bonds 0 2 6
Glycosilated No No Yes
Location Mainly intracellularly Mainly extracellularly Intravascularly
Cystatins Human: A (stefin A), 

B (stefin B) 
Rat: cystatin α and β 

Human: C, D, S, S1, S2, 
SN, SA, D 
Rat: C, S 
Mouse: C 
Chicken egg white, 
bovine colostrums, ox, 
Drosophila. 

Human, rat, bovine: 
L-kininogen, H-kininogen 
Rat: T-kininogen 
Ox: kininogen. 

Type 4 cystatins, the phytocystatins [12,19], include almost all plant cysteine proteinase 
inhibitors [30]. Plant-derived cystatins exhibit features of  both type 1 and type 2. 
Oryzacystatin, derived from rice grains, was the first to be characterized as the first 
phytocystatin, which shows a significant resemblance to cystatin in egg white [28]. 
Plant-derived cysteine inhibitors can be divided into 2 groups: with a single domain, 
to which most cystatins belong, and multi-domain, which, for example, belongs to 
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tomato multicystatin and cystatin of  the tomato leaves [19,31-33]. There are studies 
that report that some phytocystatins exhibit non-competitive papain inhibition kinetics. 
Such cystatins  are corn cystatin I and oryzacystatin-I [34], soybean, L1 and R1 [35], 
chestnut seed cystatin [31] as shown in Table 2.

Mechanism of interaction between cystatin and cysteine proteinases

The cystatins are reversible, tight-binding competitive inhibitors of  cysteine proteinases 
[29, 37]. However, due to their extremely tight interactions with certain target enzymes, 
reversibility has been difficult to verify and dissociation equilibrium constants are 
difficult to determine accurately by equilibrium methods [38]. Separate measurements 
of  association and dissociation rate constants have however demonstrated the 
reversibility also of  these very tight interactions [39] and have enabled determination 
of  Ki values as low as ~10 fM. Recombinant human cystatin C and two of  its mutants 
were expressed in Escherichia coli. The recombinant inhibitor was found to be 
identical to authentic cystatin C as judged by isoelectric focusing (pI 9.2) and kinetics 
of  inhibition of  papain and human cathepsins B, H and L. N-terminal truncation 
of  8 residues resulted in a decrease of  isoelectric point (pI 7.8), but the inhibitory 
properties were similar to those of  recombinant cystatin C, suggesting that Leu9 is a 
critical residue for the inhibition. The mutation of  Trp106 to Ser, however, resulted in 
a decreased affinity of  the inhibitor for the enzymes tested, with the largest effect on 
cathepsin B inhibition (approximately 100-fold increase in Ki) [40]. A review of  kinetic 
and structural data has enabled the authors to reconsider the definition of  substrate 
binding sites in papain-like cysteine proteases. The location and definition of  substrate 
binding sites beyond S3 and S2’ are even more questionable [41]. These results clearly 
indicate differences in the specificity of  interaction between the N-terminal region 
of  cystatin C and cathepsins B, H, L and S, and that, although cystatin C has evolved 
to be a good inhibitor of  all of  the mammalian cysteine proteinases, more specific 
inhibitors of  the individual enzymes can be engineered [42]. Stopped-flow kinetics 
showed that the inhibition of  the lysosomal cysteine proteinase, cathepsin B, by its 
endogenous inhibitor, cystatin C, occurs by a two-step mechanism, in which an initial, 
weak interaction is followed by a conformational change. The initial interaction most 
likely involves binding of  the N-terminal region of  the inhibitor to the proteinase. The 
presence of  this loop, which allows the enzyme to function as an exopeptidase, thus 
complicates the inhibition mechanism, rendering cathepsin B much less susceptible 
than other cysteine proteinases to inhibition by cystatins [43]. The N-terminal region 
of  human cystatin C has been shown to be of  crucial importance for the interaction 
of  the inhibitor with cysteine proteinases. These results show that bovine cystatin 
C has 118 residues, in contrast to 110-112 residues reported previously, and has an 
N-terminal region analogous to that of  human cystatin C (Figure 1). 
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On the monomer structure (Fig. 1A) the two disulfide bonds are shown in green, while 
the long mobile loop connecting strands 3 and 4, positioned upper left, is colored 
yellow. Blue, lower right, loop 1 shows the hinge region with the swapping domain 
responsible for the molecule dimerization. The dimer of  human cystatin C structure 
(Fig. 1B) shows the place where the individual polypeptide chains, colored red and 
blue, are positioned following the swapping domain. Loop 1 now forms a continuous 
b-strand linking the two cystatin fold units.
This region presumably is of  similar importance for tight binding of  target proteinases 
as human proteases [45] Inhibition of  calpain by human kininogen domain 2 requires 
the correct conformation and combination of  several contact sites, and suggest that the 
N-terminus and the first hairpin loop plays a major role in this ensemble. Remarkably, 
hybrid sc2-KD2 exhibited 5 or 150 times stronger inhibition of  actinidin compared 
to native chicken cystatin or to proteolytically isolated human kininogen domain 2, 
respectively. This indicates an important role of  the first hairpin loop of  cystatins 
in the interaction with actinidin. Along with the impaired inhibition of  cathepsin L, 
papain, actinidin, cathepsin B and calpain by the hybrids sc1/3-KD2, sc2/3-KD2 and 
sc1/2/3-KD2, these results support the hypothesis that all three predicted contact 
regions of  kininogen domain 2 contribute to binding in the active-site clefts of  papain-
like enzymes in a finely balanced manner [46]. The binding of  proteinases to kininogen 
has been the subject of  some dispute. Although it has been shown that two of  three 
isolated kininogen domains have an inhibitory activity when studied separately [47], 
and that the kininogens thus have the potential for binding two molecules of  cysteine 
proteinases, the evidence regarding the binding stoichiometry of  the intact molecules 
was conflicting [48]. Recently, both intact LMK and HMK have been shown by several 
methods to bind two molecules of  papain, cruzipain and cathepsins, H, L and S, thus 
clarifying the dilemma. Moreover, the two binding sites on HMK and LMK bind 
proteinase with different binding rates [49]. The three kininogen separates (HMK, 
LMK and TK) have closely similar inhibitory properties [47], indicating very small 
differences between their enzyme binding regions. The inhibition of  endopeptidases 
papain, cathepsins S and L and cruzipain by animal cystatins are extremely tight and 
ripped whereas the inhibition of  exopeptidases cathepsins B and H [50] is considerably 
weaker. The active site cleft of  known endopeptidases is free to accommodate the 
inhibitors, whereas in the case of  exopeptidases the active site cleft contains additional 

                 Figure 1. Structure model of  cystatin monomer (A) and dimer (B) [44]
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enzyme residues. In carboxydipeptidase cathepsin B its occluding loop partly occupies 
the active site cleft and needs to be displaced in order to accept a cystatin molecule 
[51]. It was suggested that the mini-chain of  aminopeptidase cathepsin H, which is 
attached to the enzyme via a disulphide bridge in the vicinity of  the active site, partly 
fills the active site cleft, therapy offering sterical hindrance to the binding of  inhibitors 
[52]. 
Most cystatins are reversible, tight binding competitive inhibitors of  cysteine 
proteinases, which form equimolar complexes with their target enzymes [53]. Their 
general mechanism of  action is based on three domains that show highly conserved 
amino acids sequences. These are important for the inhibitory activity. These domains 
consist of  10 amino acid residues in the amino terminus, a β-hairpin loop containing 
the conserved –QVVAG- residues, and a second β-hairpin loop containing the 
conserved residues Leu102, His 104 in family 1 and Trp104 in family 2 cystatins [54]. 
This wedge penetrates and covers the active site in such a fashion to block the papain 
or other cysteine proteinase’s active site cysteine residue [53,54]. 

Isolation of cystatins from natural sources

Cystatin, an inhibitor of  sulphydryl proteinases, was the first isolated from egg 
white by Fossum and Whitaker [55]. Cysteine proteinases are ultimately regulated 
by endogenous cysteine proteinase inhibitors, also named cystatins [56]. Cystatin 
superfamily inhibitors have been subdivided into three families, the intracellular type 
lacking a signal peptide (Type I, cystatin A and B), commonly termed stefins, the 
abundantly secreted, extracellular inhibitor cystatin C (Type II), and the circulating 
kininogens (Type III), and non-inhibitory proteins, such as human histidine-rich 
glycoprotein and 2HS-glycoprotein [57]. The cystatins type II  are slightly larger than 
the stefins and contain 150 amino acid residues with a molecular weight about 13 000. 
They are non-glycosylated, single chain proteins, having two intermolecular disulphide 
bridges [12,19]. The family consists mainly of  variant species of  cystatin C, cystatin S 
and its variants, and also cystatin D [58-60]. A novel human cystatin gene was identified 
in a differential display comparison, aimed at the isolation of  transcriptionally regulated 
genes involved in the invasion and metastasis of  breast cancer. It is named cystatin M, 
with 40% homology to human family II cystatins and similar overall structure [61,62].  
Human cystatin C and its avian analogue chicken cystatin are the most investigated 
members of  the family II. Cystatin C is abundant in various tissues and body fluids. 
The highest levels have been determined in the cerebrospinal fluid and seminal plasma 
[38, 63]. Quail cystatin, a new cysteine proteinase inhibitor of  the cystatin superfamily, 
was purified from egg albumen of  the Japanese quail Coturnix corturnix japonica. 
It showed 90% sequence identity with chicken cystatin [64]. Two different cysteine 
proteinase inhibitors (Forms I and II) were isolated from Chum salmon eggs, and 
their molecular weights were found to be 16000 and 11000, respectively. They can 
be classified into the new group of  the cystatin superfamily [65]. Also cystatin was 
isolated from duck egg white. The purified inhibitor that showed partial identity in 
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the immunodiffusion test with chicken egg white cystatin had an apparent molecular 
mass of  9.3 kDa as determined by SDS/PAGE [66,67]. The greatest problem in 
utilizing egg cystatins for medical treatments is their high cost about 140 $ USA dollar 
for 1 mg pure cystatin (catalogue Sigma). Publication on cystatins is less frequent 
in the literature, probably because of  extremely low contents of  cystatins in natural 
resources like eggs [7]. But, on the other hand a few groups are still working in order 
to find methods of  industrial recovering of  cystatin from egg white. Six cysteine 
proteinase inhibitors were isolated from human urine by affinity chromatography on 
insolubilized carboxymethylpapain followed by ion-exchange chromatography and 
immunosorption. Physicochemical and immunochemical measurements identified 
one as cystatin A, one as cystatin B, one as cystatin C, one as cystatin S, and one as low 
molecular weight kininogen [68,69]. The kinetic of  papain and cathepsin is described 
in Table 3 [69].

Table 3. Inhibition constants Ki for chicken egg white [69]

Inhibitor
Activity Ki

% Cathepsin B                       Papain
Chicken egg white age 47 weeks              75 2,554                                 0,0012
Chicken cystatin                       62 2,900      0,002

Ki values were determined from the inhibition of  the enzymatic activities of  papain 
and cathepsin B measured at equilibrium with the fluorogenic substrate Z-Phe-
Arg-AMC for papain and Z-Arg-Arg-AMC for cathepsin B at different inhibitor 
concentrations. Inhibition of  the enzymatic activities of  papain and cathepsin B 
measured at equilibrium with the fluorogenic substrate Z-Phe-Arg-AMC for papain 
and Z-Arg-Arg-AMC for cathepsin B in different inhibitor concentrations; activity, 
inhibitory amount expressed as percentage of  protein concentration.

CLINICAL RELEVANCE OF CYSTATIN

Cancer

The onset/progression of  malignant tumor cells is due to an imbalance between 
cysteine proteinases and their inhibitors [70,71]. However, contradictory data have 
been shown on cystatin activity in malignant tumors. Cystatin activity has been shown 
to be higher, similar, or lower compared to the activity found in normal tissues [53]. 
Others consider that cystatins have an opposite effect in the process of  malignancy. 
They consider that excess of  cystatin C could inhibit the proteolytic attack of  
cathepsins on the cancer cell by suppressing the host inflammatory response and in 
this way enhancing the oncogenicity of  the cell [39]. Cystatin C inhibits motility and in 
vitro invasiveness of  cancer cells, supporting the hypothesis that cystatins play a role 
in the maintenance of  cell differentiation [53,72]. 
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Cystatins as disease biomarkers

Recent studies show that the concentration of  cystatins or cystatins and specific 
cathepsins varies depending on the type of  cancer [56]. For example, tissue levels of  
cystatin C may be lowered in glioblastoma [73], while it is increased in ovarian cancer 
[74]. Disturbed balance between cystatins and cysteine proteases is one of  the factors 
characteristic of  a malignant tumor cell [71]. Observing the values of  individual 
cystatins and the corresponding cysteine proteases that are expressed in cancer cells 
can be a valuable tool for assessing and predicting tumor levels and recurrence [56]. 
In the case of  squamous cell carcinoma of  the head and neck, it has been proved that 
specific patterns in the ratio of  cystatin and cysteine proteinases are associated with 
the development of  aggressive types of  cancer cells and can be used in prognostics 
[75]. 
Cystatin C as an indicator of  kidney function has been suggested. Low molecular 
weight proteins are eliminated from the circulation by glomerular filtration followed 
by reabsorption and catabolism. In healthy individuals the blood cystatin C level is 
constant. Serum levels of  cystatin C are much more constant than creatinine levels, 
the best-known marker of  glomerular filtration rate. The plasma level of  cystatin C 
only rises as renal function fails [36,76]. Newman et al [77] reported an assay using 
cystatin C that showed to be more sensitive as a screening test for early renal damage 
than creatinine. Also in veterinary medicine cystatin C was analyzed as a potential 
indirect marker for glomerular filtration rate, especially in dogs [78-80]. However, 
in numerous experiments this proteinase inhibitor was stated as not a good marker 
for kidney damage [81-86], an early kidney impairment in healthy cats and dogs or 
dogs with nonrenal diseases should be taken into account. Study of  cystatin C in 
cats with nonrenal disease is still underestimated, except for hyperthyroidism or with 
corticosteroid immunosuppressant treatment. The concentration of  plasma cystatin C 
and especially the urinary cystatin, are more sensitive to detect chronic kidney disease 
than acute kidney damage in dogs [79,80].
Cystatin C plays a role in Alzheimer’s disease by co-deposition with Aβ in the 
patient’s brain binds to APP, Aβ1-40 and Aβ1-42. It also inhibits fibril formation and 
oligomerization depending on its concentration. In vitro studies indicate that cystatin 
C protects hippocampal neurons derived from rat brains against toxic oligomers and 
fibrillary forms of  Aβ [87,88]. Cystatin C inhibits cysteine proteins, induces autophagy 
and stimulates neurogenesis [89]. Treatment with egg white cystatin has a beneficial 
effect on the cognitive functions in APP/PS1 transgenic mice. The strongest effects, 
measured by swimming ability in the target zone in the Morris water maze, were found 
in mice drinking water supplied with 40 μg of  cystatin [90]. 

Anti-cancer properties of cystatins

Schelp and Pongpaew [91] suggested that proteinase inhibitors present in cereals like 
rice and maze can prevent certain types of  cancer. Bjornland et al. [92] have reported 
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antitumor activity of  cysteine proteinase inhibitors, E-64 and leupeptin, by selective 
reduction of  the growth of  transformed cells and reduction of  the occurrence of  
cancer in animal models. The authors of  Ervin and Cox [93] have shown that Cystatin 
C is a factor enhancing apoptosis and limiting the metastasis capacity of  neoplastic cells 
in lung cancer. Other studies conducted on the recombinant cytostatin (sv-cystatin) of  
the snake show that this cystatin may be an anti-angiogenic and anti-metastatic agent 
[94]. Other proteolytic enzymes may also play a role in tumor growth. Cathepsin D 
inactivates cystatins. Inhibitors of  cathepsin D may not only prevent tumor growth 
[95, 96], but also prevent the inactivation of  cystatins by cathepsin D [97], resulting in 
an accumulative inhibition of  tumor growth [53,98]. 

Cysteine proteinases in diseases

Cysteine proteinases activate proinflammatory mediators, and catalyze tissue 
degradation. Periodontitis and rheumatoid arthritis are inflammatory diseases 
catalyzed by cysteine proteinases [53,99]. Cysteine proteinases have been implicated in 
cancer malignancy by activating proproteinases like precursors of  metalloproteinases 
[100]. Cysteine proteinases can interfere with chemotherapy due to the inactivation of  
antitumor drugs such as the case of  bleomycin [53]. Smoking is associated with lower 
cystatin activity during gingival inflammation [101]. Cathepsins B and L are enzymes 
associated with the onset of  rheumatoid arthritis and higher levels of  the enzymes 
are found in synovial tissues and fluids of  arthritis patients [102,103]. Therefore, 
cathepsin B seems to be a good target for pharmacological intervention. Cysteine 
proteinase inhibitors anti-inflammatory and anti-rheumatic drugs successfully reduce 
cysteine proteinases that catalyze tissue destruction in rheumatoid arthritis [53]. 
Human cancer is characterised by its tendency to extend over the peritoneal surface of  
the abdominal cavity, resulting in a wide-spread disease. At its terminal stages, multiple 
metastatic foci appear in distant organs, possibly with the involvement of  proteolytic 
enzymes. Cancer cell lines express detectable and reproducible levels of  surface 
urokinase-type plasminogen activator and cathepsin B [104,105]. In primary tumors 
differ from metastasis in their content of  urokinase-type plasminogen activator, its 
receptor, and the inhibitor type me and II [106]. A latent, high molecular mass form of  
cathepsin B, presumably pro-cathepsin B, has been shown to accumulate in malignant 
ascetic fluids, among others from patients with ovarian cancer [107]. Both NTF and 
scuPA induced a dose-dependent increase in proliferation, with maximal stimulation 
obtained at 10-20 nM. Furthermore, blocking the interaction of  endogenous uPA with 
uPAR using anti-NTF antibodies significantly inhibited proliferation. Together, these 
data indicate that in addition to enhancing the invasive activity of  ovarian carcinoma 
cells via increased pericellular proteolysis, uPA also acts as a mitogen for ovarian 
carcinoma cells, suggesting a biochemical mechanism whereby uPA may contribute 
to ovarian carcinoma progression by modulating both cell invasion and proliferation 
[108] Furthermore, in the spontaneous metastasis model, the hybrid protein inhibited 
the formation of  lung and/or lymphatic metastasis by human ovarian carcinoma and 
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choriocarcinoma cells. The hybrid protein was much more effective than uPA-(1-134)-
peptide, UTI-(78-136)-peptide, or UTI. They conclude that this approach extends 
the possibility of  applying recombinant proteins for therapeutic use in inhibition of  
human tumor cell metastasis [109]. Saleh et al., [110] indicated that egg white cystatin 
can inhibit the overexpression cathepsins B, L in vitro.
Mice diagnosed with fatal visceral leishmaniasis can be clinically cured by direct 
implementation of  chicken cystatin in synergy with interferon-γ (IFN-γ) [111]. 
Moreover, lethal murine visceral leishmaniasis treated with cystatin C in combination 
with IFN-γ resulted in cystatin C and nitric oxide (NO) generation, which at molecular 
and cellular levels caused Th2 to Th1 conversion reducing parasites and abrogation of  
parasite infection [112].

Antimicrobial activity

Alterations to the proteinase inhibitors-cysteine proteinase ratios contribute to the 
progression of  several pathological processes. Cystatins have been shown to play a 
key role against viruses, bacteria, and parasites, in the control of  tumor growth and 
metastasis, in the protection against tissue destruction, in hereditary cystatin C amyloid 
angiopathy, in neurological disorders, and as a marker of  glomerular filtration rate 
[53,113]. Many viruses require proteolytic cleavage to become infectious. Cystatins has 
an activity against a variety of  viruses such as poliovirus, rhinovirus, coronavirus, and 
herpes simplex virus [114-116]. Cystatins have antibacterial properties as well since 
they play a role in the inhibition of  bacterial cysteine proteinases when penetrating 
normal tissues. Cystatins inhibited the growth of  Porphyromonas gingivalis [117-119] and 
Staphylococcus aureus [120]. Cysteine proteinase inhibitors have also been reported as 
inhibitors of  parasite infections such as malaria [121]. Cystatins also exhibit antifungal 
activity. Cystatins isolated from chicken eggs showed antifungal activity against 
pathogenic Candida strains [122]. In some parasitic infections, the parasite obtains 
free amino acids for protein synthesis via the action of  cysteine proteinases, which 
intracellularly degrade the host proteins. Inhibition of  these proteinases correlates 
with blocking the protein degradation and killing of  cultured parasites [53]. A parasitic 
cysteine proteinase was inhibited by cystatins, namely that of  Entamoeba histolytica, 
which is thought to play an important role in tissue invasion [123]. Cysteine proteinases 
of  cancer cells may facilitate the growth of  the tumor due to their ability to degrade 
stromal tissues and base membranes. Wesierska et al. [124] showed that egg cystatin 
can be used for its antimicrobial activity (Table 4, and Figure 2). In the Tab. 1 “no” 
represents lack of  inhibition of  selected strains by cystatin.
All strains shown in Tab. 4 were isolated from the whole chicken egg and identified 
by computer analysis (ID 32 GN, ID 32 E, and ID 32 STAPH). The strains collection 
is kept at the Department of  Functional Food Products Development, Wroclaw 
University of  Environmental and Life Sciences. 
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Table 4. Growth inhibition of  some gram positive and negative strains by chicken cystatin with 
varied concentrations in disk diffusion [109]

Strains

Inhibition zones (mm)
Chicken cystatin (µg/ disk)

80
100
120
150

3008080

100100 120120 150150 300300

Escherichia coli ATCC 25922 11 14 20 21
Escherichia coli [01]	 13 16 21 21
Escherichia coli [02] 15 19 24 24
Pseudomonas aeruginosa ATCC 27853 NO NO 16 18
Pseudomonas aeruginosa F NO NO 16 19
Pseudomonas aeruginosa P NO NO 14 16
Staphylococcus gallinarum 12 17 23 25
Staphylococcus aureus ATCC 25923 12 13 20 20
Staphylococcus xylosus NO NO 13 15
Serratia liquefaciens NO NO 13 14
Citrobacter freundii NO NO NO NO NO
Acinetobacter lwoffi 09 10 16 17
Oligella sp. 08 11 17 19
Salmonella enterica Enteritidis [01] NO NO NO NO 23
Salmonella enterica Enteritidis [05] NO NO NO NO 11
Salmonella enterica Enteritidis [08] NO NO NO NO 12
Salmonella enterica Enteritidis [17] NO NO NO NO 17
Salmonella sp. / gr. C [12]	 NO NO NO NO 16

Potential Food and Pharmaceutical Applications of Cystatins

Proteinases in the muscles from various fish species cause severe and rapid textural 
degradation during cooking [125]. Naturally occurring proteinase inhibitors have the 
ability to prevent fish tissue degradation associated with the proteinases. Successful 
applications have included the use of  beef  plasma, whey protein isolates, egg white, 
potato extract, and lactoalbumin to prevent fish tissue softening [126,127]. Cystatins 
were reported for eventual use as inhibitors of  disintegration of  fish, such as minced 
fish (surimi). Examples are carp ovarian cystatin [128] and chicken cystatin [129]. 
Those expressed in E. coli in a controlled manner were suitable for industrial use 
[128,129]. The authors report its possible use as inhibitors of  surimi gel softening. Also 
the addition of  the recombinant cystatin effectively inhibited the cathepsins activity 
and affects the degradation of  proteins, including myosin, which in consequences 
improved, soften, the gel properties of  mackerel surimi [130,131]. Benjakul et al. [125] 
and Izquierdo-Pulido et al. [126] have reported applications of  rice cystatins versus 
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proteases in Arrowtooth flounder and Pacific whiting, respectively, the two fish species used 
in surimi manufacturing. However, the antimicrobial activity of  egg white cystatin was 
very promising for a potential application of  this biomolecule in food biopreservation, 
the duration of  the antibacterial effect decreases during long incubation with Escherichia 
coli [132]. Therefore, cystatin application as a biopreservative of  foods is limited.
Cystatins have a potential to be used in food and pharmaceutical formulations as 
inhibitors of  enzymes associated with the onset and/or progression of  a wide range 
of  pathological processes. Poliomyelitis caused by poliovirus may be prevented with 
cystatins. Other pathological processes such as inflammations, infections, osteoporosis, 
and cancer may also be prevented by cystatins. Cystatins may also find application in 
the prevention of  gingivitis and periodontitis [53].

Authors’ contributions
WK and MK carried out the research planned in the study. PK, WK and MK 
participated in the alignment and drafted the manuscript. WK and MK participated in 
the design of  the study. PK and MKs participated in its design and coordination and 
helped to draft the manuscript. All authors read and approved the final manuscript.

Figure 2. Inhibition zones of  six strains of  A) Escherichia coli [02], B) Escherichia coli 
ATCC 25922, C) Staphylococcus aureus ATCC 25923, D) Escherichia coli S, E) Pseudomonas 
aeruginosa ATCC 27853, F) Staphylococcus gallinarum were spread on Muller-Hinton agar 
plates on which paper disks impregnated with 80 µg (1), 100 µg (2), 120 µg (3), and 150 µg/disk 
(4) of  chicken cystatin were placed. In the centre of  the plate, the disk paper without cystatin 
added. Incubation period was 24 h at 37oC [109].
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CISTATIN BELANCA JAJA – PREGLED 

KUPAJ Patryk, KORUS Maciej, KORZENIOWSKA Malgorzata, KOPEC Wieslaw

Belance jajeta je u širokoj upotrebi i to ne samo za ishranu ljudi već i kao sirovina za 
prehrambenu industriju, farmaceutsku i kozmetičarsku industriju. Cistatin je biološki 
aktivna komponenta belanca jaja i većinom se koristi kao inhibitor cistein proteaza 
nalik na papain. Cistatin je izolovan iz kokošjih jaja i kasnije upotrebljen za formiranje 
nomenklature strukturno i funkcionalno sličnih proteina. Cistatini poreklom od ži-
votinja, uključujući i miševe, pacove, pse, goveda i iz belanaca kokošjih jaja, izolovani 
su i nedavno su upotrebljeni za ishranu ljudi i za farmaceutsku industriju. Cistatin na 
našao svoju upotrebu i upotrebu u medicini zahvaljujući antibakterijskim, antivirusnim 
i insekticidnim efektima i to u cilju prevencije cerebralnih hemoragija i za kontrolu 
metastaza kod tumora.


